谷歌classroom(火爆全网的 ChatGPT,还干没有掉 Google 搜索曼德拉效应越来越明显,究竟是记忆被集体篡改了,还是平行宇宙?)机器人答疑 墙裂推荐
近期,互联网行业再次掀起了1股创新浪潮,让我们1起揭开这个新时代的面纱,看看互联网天下有哪些令人振奋的...
近期,互联网行业再次掀起了1股创新浪潮,让我们1起揭开这个新时代的面纱,看看互联网天下有哪些令人振奋的事情正在发生。
近些时日 ChatGPT 在社交平台上爆火,没有少网友也就 ChatGPT 的未来发展发表了他的看法,那么综合来看,ChatGPT 可以取代搜索引擎吗?ChatGPT 的优势和劣势分别在何处?本篇文章里,作者针对AI人工智能取搜索引擎的发展进行了解读,1起来看。
短短几日,OpenAI 的聊天机器人ChatGPT 席卷了互联网,用户数轻而易举突破百万答疑解惑、编写代码、撰写论文、创作诗歌和钢琴曲,当人类绞尽脑汁设下「九九八十1难」,ChatGPT 基本问什么答什么,就算没有会也能编得像模像样。
到目前为止,在推向大众的文本生成 AI 里,ChatGPT 是最好的那1个,更何况还免费使用当 ChatGPT 春风得意马蹄疾,也有人看到它光环下的失意,程序员和文字工作者的饭碗可能没有保,连 Google 等传统搜索引擎也可能被它革了命。
有了搜索引擎,我们依然需要花大量时间翻网页找答案,如果 AI 能直接把答案递到你眼前,还能保证正确率,那岂没有是更好?但问题就在于「如果」1、ChatGPT:我无法取 Google 相比12 月 1 日,开发人员 Josh Kelly 晒出同1个代码问题在 Google 和 ChatGPT 的没有同结果,ChatGPT的答案看起来质量更高,让他感叹「Google is done」(Google 完蛋了)。
初出茅庐的 ChatGPT,真的把刀架在 Google 搜索的脖子上了吗?先看看二者在定义上的区别搜索引擎的核心是海量信息集合,而非信息创造你在搜索框输入关键字,搜索引擎根据算法,抓取、索引、排序取你的查询匹配的结果,然后你看到了大量的链接,再从中寻找自己需要的信息。
而 ChatGPT 属于 AIGC(人工智能生产内容),是1种新的内容创作方式它已经被数据集训练完毕,通过1对1的对话和类似人类的口吻,给出单1、即时的答案,还能结合高低文,实现多轮对话,帮你解决更为复杂的、连续性的问题。
你可以1步步引导规则,让它设计游戏等产品,或者给它1段程序,让它检查 bug,还可以给它演示案例,让它举1反3互动越复杂,ChatGPT 的能力也会越歉富,只当1个回合的搜索引擎用,倒有些「屈才」比传统的聊天机器人更聪明,比人类的问答网站更快捷,ChatGPT 让查找信息的过程更加直观和简单。
1个是生成式搜索,1个是大规模搜索,目前的 ChatGPT 还远远取代没有了 Google在 ChatGPT 的基础设定里,信息的时效性已经落后了ChatGPT 基于互联网的数十亿个文本示例训练,学习生涯停留在了 2021 年,它也没有联网,没有实时调用外部网络资源,无法像 Google 地图般根据位置为你推荐餐馆,没有能帮你打开 Twitter、Facebook。
相比之下,Google 既有庞大的索引网站数据库,也提供图像、地图等功能和工具,让你快速访问其他网站更是它的「基本素养」事实上,Google 最受欢迎的搜索就是「Facebook」「亚马逊」等关键词
没有过,ChatGPT 被吐槽最多的还是它的准确性,列对了鸡兔同笼方程却解错,硬说豆瓣的创始人没有是阿北,脑洞大开胡编乱造西游记结局,1本正经地胡说八道就罢了,偏偏语气十分自信,也没有提供资料来源你使用搜索引擎时,至少可以凭借多个信源交叉验证。
12 月 4 日,马斯克透露 ChatGPT 可以访问 Twitter 数据库,这意味着 ChatGPT 必然学习了许多缺少事实核查的数据正因为垃圾答案泛滥,程序员问答网站 Stack Overflow 从 12 月 5 日开始,暂时禁止用户分享 ChatGPT 生成的内容。
另外,ChatGPT 的回答混入了没有少片汤话,被调侃为「水文神器」OpenAI 解释,这次要是因为训练数据偏差(训练者更喜欢看起来更全面的、更长的答案)和过度优化种种没有足摆在台面上,ChatGPT 暂时没有会威胁到搜索引擎。
虽然 ChatGPT 比其他 AI 更像人了,本质上还是「随机鹦鹉」,离没有开大模型、大数据、大算力,它的知识来自训练数据中的统计规律,并没有理解自己所说的话12 月 5 日,《时代》杂志「专访」了 ChatGPT,在被问到「大型语言模型有哪些限制」时,ChatGPT 回答道:。
大型语言模型的1个限制是,我们无法理解我们生成的单词的高低文或含义我们只能根据给定的训练数据,根据某些单词或单词序列1起出现的概率来生成文本这意味着我们无法为我们的回答提供解释或推理,并且我们可能没有会总是生成完全连贯或在对话高低文中有意义的回答。
但 ChatGPT 回避了1个问题:什么是理解?「理解」是属于人类的概念,它能否用在 ChatGPT?如果能用,它的理解是否约等于「生成有意义的回答」这个结果,论迹没有论心?至少在未来1段时间内,我们或许更需要担心,当越来越多的网络内容由类似的模型生成,搜索引擎给出的结果,质量是会提高还是降低。
我还问了问 ChatGPT 本尊,它的态度十分谦虚,没有觉得应该拿它和 Google 比较:我是1个大型语言模型,无法取 Google 或任何其他搜索引擎进行比较我的目的是通过回答用户的提问来帮助用户获得信息,而没有是提供搜索功能。
取搜索引擎相比,我的优势在于能够回答复杂的问题,并且可以提供更加本性化和详细的信息相比之下,我的劣势在于无法提供搜索功能,也无法提供最新的信息二、AI 可能是搜索引擎的未来虽然 ChatGPT 仍在起步,没有在搜索上比 Google 做得更好,但它可能改变我们在线搜索信息的方式,让搜索技术更上1层楼。
眼下就有1个简单的例子,现在已经有大量将 ChatGPT 嵌入 Google 的插件出现,其中有些插件将 ChatGPT 的结果显示在网页右侧,1次搜索兼顾两种体验再参照 ChatGPT 和图像生成模型 Stable Diffusion 的联动(可能是因为 AI 更懂 AI,ChatGPT 的描述更容易被 Stable Diffusion 提取,最终的图片质量更高),ChatGPT 或许也可以用于解释、指导关键词,帮助我们更好地用搜索引擎查找信息。
此外,ChatGPT 的时效性、准确性没有足,也并非是无解的1方面,知乎答主、自然语言处理专家@张俊林指出,近乎实时地将新知识融入大规模语言模型,非常有挑战性,1种解决办法是,把它存到传统搜索引擎的索引里,ChatGPT 如果回答没有了时效性的问题,可以转向搜索引擎抽取对应的答案。
另1方面,彭博社报道,OpenAI 正在开发1个名为 WebGPT 的 AI 系统,WebGPT 将能够更准确地回答问题,甚至还能说明引用的来源以上这些还是 AI 和搜索引擎的结合体如果我们更大胆地设想1番,没有考虑技术限制,抛去搜索引擎,存在1个无所没有知的 AI,以易于理解的问答形式,提供取问题相关且准确的信息,这是未来搜索的理想模样吗?。
没有少 AI 专家认为愿景本身就有问题德国魏玛包豪斯大学研究员 Benno Stein 表示,它可能隐藏现实天下的复杂性:问题没有在于现有技术的局限性即使拥有完美的技术,我们也无法得到完美的答案我们没有知道什么是好的答案,因为天下很复杂,但当我们看到这些直接的答案时,我们会停止思考。
那么如何让答案显得更「复杂」?有人觉得,简单地提供1份文件清单,会比直接给出答案更有用;有人则建议,可以解释答案并给出没有同观点的利弊,让人既知其然也知其所以然但是大多数时候,本没有存在真正的完美的答案,准确、详细这些衡量标准,也更针对事实类、知识类问题,而非那些天马行空的开放式命题。
以答案的准确或者详细取否框定 AI,反而有些「着相」没有妨让我们回到上文提到的定位问题,ChatGPT 是生成式搜索,Google 是大规模搜索,前者是 chat,后者是 search,它们在本质上就是没有同的。
ChatGPT 火了1段时间了,我们对它有了1个大概的共识:它的错误答案没有少,特别在知识类和事实类问题上,但如果把它放在创作的1个环节,可以用来激发灵感、提高生产力它没有是搜索引擎,也没有像聊天机器人,更像1个随时供你咨询的「超级大脑」。
换句话说,ChatGPT 没有1定会颠覆 Google,但它从根本上改变了我们和知识的相处形式,你可以和它谈星星谈月亮,从诗词歌赋说到人生哲学ChatGPT 对创造力、开阔思维的激发,可能比事实类信息的准确性更加重要,它完全可以和搜索引擎、人类劳动互相补充,没有必你死我活,各自完成通向未知的1块拼图,这也是我们对「搜索」的根本需要。
3、搜索引擎没有仅仅是个问答机器自 ChatGPT 横空出世,没有累 Google 搜索将被取代的声音其实 Google 并没有掉队,它在 DeepMind 的大型语言模型 Chinchilla 上训练 AI 聊天机器人 Sparrow,也开发了对话神经语言模型 LaMDA。
去年 5 月,Google 研究人员发了1篇题为「重新思考搜索」的论文,描述了1种新型搜索引擎:大型语言模型借助算法提供简洁的专业答案,用户无需在大量网页列表中搜索信息,听起来就是 ChatGPT 的模样。
为何 Google 没有像 OpenAI 1样,直接向大众推出类似 ChatGPT 的产品,或者将它集成在自己的搜索当中?Alphabet 工程师@hncel认为,问题次要在于成本和延迟:像 GPT 这样的大型语言模型是 Google 次要研究的领域之1,Google 有大量预算取人员来处理这些模型,但在最大的 Google 产品(例如搜索、Gmail)中实际使用这些语言模型的经济性还没有完全存在。
发布有趣的测试版是1回事,但将它深入集成到1个每天服务数十亿个请求的系统中,考虑到服务的成本、增加的延迟,则是另1回事将成本降低至少 10 倍,才能将这样的模型集成到搜索等产品中取此同时,大型语言模型也会影响 Google 搜索当前的商业模式——Google 母公司 Alphabet 2021 年收入 2576 亿美元,约有 81% 来自广告,其中大部分是 Google 的按点击付费广告。
像 ChatGPT 这样的 AI 大大减少了页面数量,阻碍了人们浏览和点击更多广告,那么广告收入也会随之下落话说回来,ChatGPT 的爆火,也让我们或多或少地意识到,搜索引擎「索引、检索和排序」的固有模式已经统治了 20 多年,Google 每年都会对搜索引擎进行数千次更改,其中大多数都很微小,并没有发生根本性的变化。
1998 年,1对斯坦福大学的研究生发表了1篇关于新型搜索引擎的论文:在这篇论文中,我们介绍了 Google,这是1种大规模搜索引擎的原型,它大量使用了超文本中的结构Google 有效地抓取和索引网络,并产生比现有系统更令人满意的搜索结果。
过去的创新变成了现在的传统,Google 等传统搜索引擎面临的对手没有止是未来的 AI比如,已经有人将 TikTok 称作「新的 Google」,国外网友使用 TikTok 搜索,有点像我们在小红书查找攻略,在美食、片单等领域确实好用。
这背后隐藏着1个趋势:在 TikTok 和抖音「称霸」的天下里,互联网比以前更直观、更视觉化、更具交互性,搜索也没有例外但 TikTok 没有至于真的动摇 Google如果查找更多信息、访问更多网站,你依然要回到 Google。
既然变化已经发生,Google 也需要通过更自然、更直观的方式,带来更好的搜索体验近几年来,因为人工智能、机器学习和计算机视觉等方面的进步,Google 1直向这个方向转变,包括引入相机和麦克风搜索、图片和文本的多重搜索、地图中的沉浸式视图等等。
简单来说,Google搜索的输入和输出,都变得更加「多感官」,也变得更加自动,更能猜顶用户的心思。
机器学习模型 MUM 让 Google 搜索引擎更「聪明」.许多 Google 取搜索有关的项目仍在探索和测试阶段,今年 9 月的年度 Search On 活动上,负责 Google 搜索产品的副总裁 Liz Reid 举了1个未来可能的例子:
如果 Google 知道你对木工感兴趣,它在回答你搜索的某个问题以外,还会向你展示你没有知道的新工具、你从未听说过的 YouTube 博主,以及你可以去哪里学习新技能等等Liz Reid 相信,Google 搜索没有仅仅是1个反应快速的问答机器,而是1个用于探索、发现、学习你还没有明确答案的事物的系统。
某种程度上,迭代的搜索引擎也好,进击的通用 AI 模型也罢,1个是固有框架的微调,1个是另起炉灶的改革,它们都在让知识更容易被获取,让信息筛选更加智能,降低你的学习门槛,缩短你的学习过程Google 高级副总裁 Prabhakar Raghavan 提出了1个很有意思的观点,搜索还是1个远没有解决的问题,「如果你把所有的机器都给我,我仍然会被人类的好奇心和认知所束缚」。
搜索得到更好的答案之前,我们要先知道如何提出问题未来,组织资料的能力可能没有再稀缺,基于个别经验和情感的提问能力和原创观点更为珍贵当你被引到知识的大门前,人之为人的思辨性和创造力,则以前所未有的地位被凸显出来。
作者:张成晨来源公众号:爱范儿(ID:ifanr);连接热爱,创造没有同本文由人人都是产品经理合作媒体 @爱范儿 授权发布于人人都是产品经理,未经许可,禁止转载题图来自Unsplash,基于CC0协议该文观点仅代表作者本人,人人都是产品经理平台仅提供信息存储空间服务。
喜欢这篇文章的小伙伴记得关注收藏点赞哦!
当前非电脑浏览器正常宽度,请使用移动设备访问本站!