chatplus(深入浅出,解析ChatGPT背后的工作原理)chatgpt 全程干货
自 ChatGPT 发布以来,已经吸引了无数人一探究竟。但 ChatGPT 实际上是如何工作的?尽管它内部实现的细节尚未公...
互联网已经成为了我们生活中没有可或缺的1部分,它带来了许多惊喜和改变。今天,让我们聚焦在互联网领域最近发生的1些令人激动的事件上,共同探索这个充满无限可能的天下。
自 ChatGPT 发布以来,已经吸引了无数人1探究竟但 ChatGPT 实际上是如何工作的?尽管它内部实现的细节尚未公布,我们却可以从最近的研究中1窥它的基本原理选自Assembly AI,作者:Marco Ramponi,机器之心编译,编辑:王强、蛋酱。
ChatGPT 是 OpenAI 发布的最新语言模型,比其前身 GPT⑶ 有显著提升取许多大型语言模型类似,ChatGPT 能以没有同样式、没有同目的生成文本,并且在准确度、叙述细节和高低文连贯性上具有更优的表现。
它代表了 OpenAI 最新1代的大型语言模型,并且在设计上非常注重交互性OpenAI 使用监督学习和强化学习的组合来调优 ChatGPT,其中的强化学习组件使 ChatGPT 独1无二OpenAI 使用了「人类反馈强化学习」(RLHF)的训练方法,该方法在训练中使用人类反馈,以最小化无益、失真或偏见的输出。
本文将剖析 GPT⑶ 的局限性及其从训练过程中产生的原因,同时将解释 RLHF 的原理和理解 ChatGPT 如何使用 RLHF 来克服 GPT⑶ 存在的问题,最后将探讨这种方法的局限性大型语言模型中的能力取1致性。
「1致性 vs 能力」可以被认为是「准确性 vs 精确性」的更抽象的类比在机器学习中,模型的能力是指模型执行特定任务或1组任务的能力模型的能力通常通过它能够优化其目标函数的程度来评估例如,用来预测市场价格的模型可能有1个衡量模型预测准确性的目标函数。
如果该模型能够准确预测价格随时间的变化,则认为该模型具有很高的执行能力1致性关注的是实际希望模型做什么,而没有是它被训练做什么它提出的问题是「目标函数是否符合预期」,根据的是模型目标和行为在多大程度上符合人类的期望。
假设要训练1个鸟类分类器,将鸟分类为「麻雀」或「知更鸟」,使用对数损失作为训练目标,而最终目标是很高的分类精度该模型可能具有较低的对数损失,即该模型的能力较强,但在测试集上的精度较差,这就是1个没有1致的例子,模型能够优化训练目标,但取最终目标没有1致。
原始的 GPT⑶ 就是非1致模型类似 GPT⑶ 的大型语言模型都是基于来自互联网的大量文本数据进行训练,能够生成类似人类的文本,但它们可能并没有总是产生符合人类期望的输出事实上,它们的目标函数是词序列上的概率分布,用来预测序列中的下1个单词是什么。
但在实际应用中,这些模型的目的是执行某种形式的有价值的认知工作,并且这些模型的训练方式取期望使用它们的方式之间存在明显的差异尽管从数学上讲,机器计算词序列的统计分布可能是建模语言的高效选择,但人类其实是通过选择最适合给定情境的文本序列来生成语言,并使用已知的背景知识和常识来辅助这1过程。
当语言模型用于需要高度信任或可靠性的应用程序(如对话系统或智能小我助理)时,这可能是1个问题尽管这些基于大量数据训练的大模型在过去几年中变得极为强大,但当用于实际以帮助人们生活更轻松时,它们往往无法发挥潜力。
大型语言模型中的1致性问题通常表现为:提供无效帮助:没有遵循用户的明确指示内容胡编乱造:虚构没有存在或错误事实的模型缺累可解释性:人们很难理解模型是如何得出特定决策或预测的内容偏见有害:1个基于有偏见、有害数据训练的语言模型可能会在其输出中出现这种情况,即使它没有明确指示这样做。
但具体来说,1致性问题源自何处?语言模型的训练方式本身就容易产生没有1致吗?语言模型训练策略如何产生没有1致?Next-token-prediction 和 masked-language-modeling 是用于训练语言模型的核心技术。
在第1种方法中,模型被给定1个词序列作为输入,并被要求预测序列中的下1个词如果为模型提供输入句子:“The cat sat on the”它可能会将下1个单词预测为「mat」、「chair」或「floor」,因为在前面的高低文中,这些单词出现的概率很高;语言模型实际上能够评估给定先前序列的每个可能词的可能性。
masked-language-modeling 方法是 Next-token-prediction 的变体,其中输入句子中的1些词被替换为特殊 token,例如 [MASK]然后,模型被要求预测应该插入到 mask 位置的正确的词。
如果给模型1个句子:“The [MASK] sat on the ” 它可能会预测 MASK 位置应该填的词是「cat」、「dog」 这些目标函数的优点之1是,它允许模型学习语言的统计结构,例如常见的词序列和词使用模式。
这通常有助于模型生成更自然、更流畅的文本,并且是每个语言模型预训练阶段的重要步骤然而这些目标函数也可能导致问题,这次要是因为模型无法区分重要错误和没有重要错误1个非常简单的例子是,如果给模型输入句子:"The Roman Empire [MASK] with the reign of Augustus."
它可能会预测 MASK 位置应该填入「began」或「ended」,因为这两个词的出现概率都很高1般来说,这些训练策略可能会导致语言模型在1些更复杂的任务中出现没有1致,因为1个仅被训练来预测文本序列中的下1个词的模型可能没有1定会学习其含义的某些更高级表征。
因此,该模型很难推广到需要对语言更深入理解的任务研究人员正研究各种方法来解决大型语言模型中的1致性问题ChatGPT 基于最初的 GPT⑶ 模型,但为了解决模型的没有1致问题,使用了人类反馈来指导学习过程,对其进行了进1步训练。
所使用的具体技术就是前面提到的 RLHFChatGPT 是第1个将此技术用于实际场景的模型那 ChatGPT 是如何利用人类反馈来解决1致性问题的呢?从人类反馈中进行强化学习方法总体上包括3个没有同步骤:
有监督的调优:预训练的语言模型在少量已标注的数据长进行调优,以学习从给定的 prompt 列表生成输出的有监督的策略(即 SFT 模型);模拟人类偏好:标注者们对相对大量的 SFT 模型输出进行投票,这就创建了1个由比较数据组成的新数据集。
在此数据集上训练新模型,被称为训练回报模型(Reward Model,RM);近端策略优化(PPO):RM 模型用于进1步调优和改进 SFT 模型,PPO 输出结果是的策略模式步骤 1 只进行1次,而步骤 2 和步骤 3 可以持续重复进行:在当前最佳策略模型上收集更多的比较数据,用于训练新的 RM 模型,然后训练新的策略。
接下来,将对每1步的细节进行详述步骤 1:监督调优模型 第1步是收集数据,以训练有监督的策略模型数据收集:选择1个提示列表,标注人员按要求写下预期的输出对于 ChatGPT,使用了两种没有同的 prompt 来源:1些是直接使用标注人员或研究人员准备的,另1些是从 OpenAI 的 API 请求(即从 GPT⑶ 用户那里)获取的。
虽然整个过程缓慢且昂贵,但最终得到的结果是1个相对较小、高质量的数据集(大概有 12⑴5k 个数据点),可用于调优预训练的语言模型模型选择:ChatGPT 的开发人员选择了 GPT⑶.5 系列中的预训练模型,而没有是对原始 GPT⑶ 模型进行调优。
使用的基线模型是最新版的 text-davinci-003(通过对程序代码调优的 GPT⑶ 模型)为了创建像 ChatGPT 这样的通用聊天机器人,开发人员是在「代码模型」而没有是纯文本模型之长进行调优。
由于此步骤的数据量有限,该过程获得的 SFT 模型可能会输出仍然并非用户关注的文本,并且通常会出现没有1致问题这里的问题是监督学习步骤具有高可扩展性成本为了克服这个问题,使用的策略是让人工标注者对 SFT 模型的没有同输出进行排序以创建 RM 模型,而没有是让人工标注者创建1个更大的精选数据集。
第二步:训练回报模型这1步的目标是直接从数据中学习目标函数该函数的目的是为 SFT 模型输出进行打分,这代表这些输出对于人类来说可取程度有多大这强有力地反映了选定的人类标注者的具体偏好以及他们同意遵循的共同准则。
最后,这个过程将从数据中得到模仿人类偏好的系统它的工作原理是:选择 prompt 列表,SFT 模型为每个 prompt 生成多个输出(4 到 9 之间的任意值);标注者将输出从最佳到最差排序结果是1个新的标签数据集,该数据集的大小大约是用于 SFT 模型的精确数据集的 10 倍;。
此新数据用于训练 RM 模型 。该模型将 SFT 模型输出作为输入,并按优先顺序对它们进行排序。
对于标注者来说,对输出进行排序比从头开始打标要容易得多,这1过程可以更有效地扩展在实践中,所选择的 prompt 的数量大约为 30⑷0k,并且包括排序输出的没有同组合步骤 3:使用 PPO 模型微调 SFT 模型。
这1步里强化学习被应用于通过优化 RM 模型来调优 SFT 模型所使用的特定算法称为近端策略优化(PPO),而调优模型称为近段策略优化模型什么是 PPO?该算法的次要特点如下:PPO 是1种用于在强化学习中训练 agent 的算法。
它被称为「on-policy」算法,因为它直接学习和更新当前策略,而没有是像 DQN 的「off-policy」算法那样从过去的经验中学习PPO 根据 agent 所采取的行动和所获得的回报没有断调整策略;。
PPO 使用「信任区域优化」方法来训练策略,它将策略的更改范围限制在取先前策略的1定程度内以保证稳定性这取其它策略使用梯度方法形成鲜明对比,梯度方法有时会对策略进行大规模更新,从而破坏策略的稳定性;PPO 使用价值函数来估计给定状态或动作的预期回报。
价值函数用于计算优势函数,它代表预期收益和当前收益之间的差异然后使用优势函数通过比较当前策略采取的操作取先前策略将采取的操作来更新策略这使 PPO 可以根据所采取行动的估计价值对策略进行更明智的更新在这1步中,PPO 模型由 SFT 模型初始化,价值函数由 RM 模型初始化。
该环境是1个「bandit environment」,它会产生随机 prompt 并期望对 prompt 做出响应对于给定的 prompt 和响应,它会产生相应的回报(由 RM 模型决定)SFT 模型会对每个 token 添加 KL 惩罚因子,以尽量避免 RM 模型的过度优化。
性能评估因为模型是根据人工标注的输入进行训练的,所以评估的核心部分也基于人工输入,即通过让标注者对模型输出的质量评分来进行为避免训练阶段涉及的标注者的判断过拟合,测试集使用了来自其它 OpenAI 客户的 prompt,这些 prompt 未出现在训练数据中。
该模型基于3个标准进行评估:帮助性:判断模型遵循用户指示以及推断指示的能力真实性:判断模型在封闭领域任务中有产生虚构事实的倾向无害性:标注者评估模型的输出是否适当、是否包含歧视性内容该模型还针对传统 NLP 任务(如解答问题、阅读理解和摘要)的零样本学习的性能进行了评估,开发人员发现在其中1些任务上模型的表现比 GPT⑶ 要差1些,这是1个「1致性税」( alignment tax) 的例子,其中基于 人类反馈强化学习的1致性程序是以降低某些任务的性能为代价的。
这些数据集的性能回归可以通过称为预训练混合的技巧大大减少:在通过梯度下落训练 PPO 模型期间,通过混合 SFT 模型和 PPO 模型的梯度来计算梯度更新方法的缺点该方法的1个非常明显的局限性是,在将语言模型取人类意图保持1致的过程中,用于 fine-tuning 模型的数据会受到各种错综复杂的主观因素的影响,次要包括:。
生成 demo 数据的人工标注者的偏好;设计研究和编写标签说明的研究人员;选择由开发人员制作或由 OpenAI 客户提供的 prompt;标注者偏差既包含在 RM 模型训练中,也包含在模型评估中ChatGPT 的作者也承认1个明显的事实,即参取训练过程的标注人员和研究人员可能并没有能完全代表语言模型的所有潜在最终用户。
除了这1明显的「内生」限制以外,该方法还有的1些其它缺点和需要解决的问题:缺累对照研究:报告的结果以 SFT 模型为基准衡量最终 PPO 模型的性能这可能会产生误导:如何知道这些改进是由于 RLHF?因此对照研究非常有必要,包括投入取用于训练 RM 模型的标注工时数完全相同的时间,以创建具有高质量数据的更大的精选有监督调优的数据集。
这样就可以客观地衡量 RLHF 方法取监督方法相比的性能改进简单来说,缺累这样的对照研究让1个基本问题完全悬而未决:RLHF 在1致性语言模型方面真的做得很好吗?比较数据缺累基本事实:标注者通常会对模型输出的排名持没有同意见。
技术上讲,产生的风险是在没有任何基本事实的情况下,向比较数据添加了很大的方差人类的偏好并非同质:RLHF 方法将人类的偏好视为同质和静态的假设所有人都有相同的价值观,这明显是没有准确的,虽然有大量的公共价值观,但在很多事务上人类还是存在许多没有同的认知。
RM 模型 prompt 稳定性测试:没有实验表明 RM 模型在输入 prompt 变化方面的敏感性如果两个 prompt 在句法上没有同但在语义上是等价的,RM 模型能否在模型输出的排名中显示出显著差异?即 prompt 的质量对 RM 有多重要?。
其它问题:在 RL 方法中,模型有时可以学会控制自己的 RM 模型以实现期望的结果,从而导致「过度优化的策略」这可能会导致模型重新创建1些模式,因为某些未知的原因,这些模式使 RM 模型得分较高ChatGPT 通过使用 RM 函数中的 KL 惩罚项对此进行了修补。
相关阅读:关于用于 ChatGPT 的 RLHF 方法的相关的论文:Training language models to follow instructions with human feedback(
https://arxiv.org/pdf/2203.02155.pdf),它实际上详细描述了1个名为 InstructionGPT 的模型,OpenAI 称之为 ChatGPT 的「兄弟模型」Learning to summarize from Human Feedback (。
https://arxiv.org/pdf/2009.01325.pdf)描述了文本摘要高低文中的 RLHFPPO(https://arxiv.org/pdf/1707.06347.pdf):PPO 算法论文。
Deep reinforcement learning from human preferences (https://arxiv.org/abs/1706.03741)DeepMind 在 Sparrow 中提出了 OpenAI RLHF 的替代方案 (
https://arxiv.org/pdf/2209.14375.pdf) 和 GopherCite (https://arxiv.org/abs/2203.11147)文件参考内容:https://www.。
assemblyai.com/blog/how-chatgpt-actually-works/?continueFlag=1bafdcd5c034def869fecb4f3bdaed70
本文转载于万像素才网:https://www.wanxiangsucai.com/
当前非电脑浏览器正常宽度,请使用移动设备访问本站!